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We consider the extensional flow and twist of a finite, slender, nearly straight, 
Newtonian viscous fibre when its ends are drawn apart a t  prescribed velocity. The 
initial cross-section of the fibre may be arbitrary and may vary gradually in the axial 
direction. We derive the leading-order equations for the fibre’s free surface and its 
flow velocity from a regular perturbation expansion of the full Stokes’ flow problem 
in powers of the aspect ratio. In order to obtain these equations systematically, it is 
necessary to consider terms beyond the leading order in the perturbation expansion, 
because those obtainable from the leading-order terms give an indeterminate set of 
equations. Our results are a pair of well-known hyperbolic equations for the area and 
axial velocity, together with (i) straightness of the line of centres of mass of the cross- 
section and (ii) a new hyperbolic evolution equation for the twist of the cross-section. 
It is only through this hyperbolic equation that history effects are manifest. 

1. Introduction 
The problem of determining the evolution of the cross-sectional area, A(x, t ) ,  and 

the axial velocity, u(z, t ) ,  of a slender, nearly straight, axisymmetric, Newtonian 
viscous fibre can be described by the equations 

A,+ (d), = 0, (3p4uJz = 0, (l.la, b)  

where the axis of symmetry is along the x-axis, p is the dynamic viscosity of the fibre 
and 3p its so-called Trouton viscosity. These equations are well known in the context 
of molten glass draw-down (Geyling & Homsy 1980), glass-fibre tapering (Dewynne, 
Ockendon & Wilmott 1989 ; Geyling 1976), and polymer-fibre production (Pearson & 
Matovich 1969). The various additional effects of surface-tension, coupled heat flow, 
gravity, small initial asymmetry, aerodynamic forces, more complicated rheology 
and inertia have been considered by Geyling (1976), Geyling & Homsy (1980), Kas6 
(1974), Person & Matovich (1969), Entov & Yarin (1984), Myers (1989), Schultz & 
Davis (1982), Beris & Liu (1988), Bechtel et al. (1988) and Shah & Pearson (1972). 

Equations (1  . l )  can be derived from the assumption of purely extensional flow and 
the application of one-dimensional mass and momentum conservation (to yield 
(1 .1  a )  and (1 .l b )  respectively). Alternatively they can be derived systematically by 
the use of regular asymptotic expansions of the full Stokes’ equations for the physical 
problem, where they emerge as the leading-order equations (Dewynne et al. 1989; 
Wilmott 1989). Using the systematic approach it is, however, necessary to consider 
terms of order higher than leading-order in the asymptotic series to obtain the 
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momentum equation (1.lb) (Schultz & Davis 1982, Entov & Yarin 1984). It is also 
necessary to consider these higher-order terms to deduce that the fibre’s centreline 
will remain straight if it  is initially straight. This matter has been discussed in the two- 
dimensional case, in which the centreline is not initially straight, in Buckmaster & 
Nachman (1978), Buckmaster, Nachman & Ting (1975) and Wilmott (1989). It is 
interesting that while the model seems to be more difficult in the ‘fully nonlinear’ 
case, its derivation is actually quicker than the ‘nearly straight ’ case. We will return 
to this in the conclusion. 

The situation is somewhat analogous to that in the theory of elastostatics with 
geometric nonlinearity. There, the Kirchhoff equations of elastica theory can be 
derived either by making certain assumptions about the stress distribution (Love 
1927) or by a systematic asymptotic analysis of the equations of three-dimensional 
elasticity (Parker 1984). The latter approach, however, again requires consideration 
of first-order terms as well as leading-order ones. This situation seems to arise 
whenever a thin-layer problem in continuum mechanics is treated by approximating 
a three-space-dimensional elliptic problem by a lower-space-dimensional parabolic 
problem and the driving mechanism is only applied at the ends of the thin layer. 
Then the fact that the leading-order motion along the length of the layer is some non- 
trivial eigensolution of a parabolic differential equation only permits its precise 
determination via the Fredholm alternative applied to the first-order non- 
homogeneous parabolic differential equation. Examples where this happens are 
shallow-water theory and theories of plates and shells as well as those mentioned 
above, but not classical boundary-layer or lubrication theory. 

In this paper we consider the problem of simultaneously stretching and twisting 
a finite, slender, viscous fibre of arbitrary cross-sectional shape that may vary 
gradually in the axial direction. In order to generalize (l.l), to determine the 
evolution of the cross-sectional shape, it is no longer enough to assume pure 
extensional flow and use one-dimensional conservation laws. Instead, we obtain the 
equations describing the problem to leading-order based on a systematic study of 
asymptotic expansions of the full Stokes’ flow equations for the problem. Although 
the problem considered in this paper has applications to the draw-down of glass melts 
with arbitrary cross-sections and the tapering of geometrically complicated optical 
fibre couplers, we will ignore many physical effects relevant to these problems (such 
as surface tension, gravity and coupled heat flow). We do so in order to highlight the 
mathematically interesting feature of the problem, namely, that in order to obtain 
a well-posed set of equations for the leading-order problem we have to consider 
higher-order terms. Specifically, we will derive the leading-order equations for the 
axial momentum, for the displacement of the centreline and for the transmission of 
the shear stress from consideration of higher-order terms of the asymptotic 
expansion of the Stokes’ flow problem. 

2. The scaled equations 
Before we start, we note that our field equations and free boundary conditions are 

all invariant under rigid-body motion. The specification of the positions of the ends 
of the fibre gives uniqueness, but any rigid-body motion of a line joining these ends 
will be automatically imposed on the solution. 

The equations of Stokes’ flow are 

v.0 = 0,  v-q = 0, (2.1) 
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FIGURE 1. The coordinate system. 

where Q is the stress tensor with components 

p is the pressure, ,u the dynamic viscosity and q = (u, v, w) is the fluid velocity vector. 
As in figure 1, the x-axis and direction of u are approximately parallel to the fibre, 
in a sense to be made more precise later (see (4.10)). We ignore gravity and other 
body forces in (2.1). 

The free surface of the fibre is described by an equation of the form 

G(x ,  y, Z, t )  = 0.  

On the free surface of the fibre we have the kinematic condition 

and the dynamic conditions are, in the absence of surface tension, the zero-stress 
conditions 

u-n = 0 on G(x ,  y, z, t )  = 0,  (2.3) 

where n is the unit normal to the free surface. Equations (2.1)-(2.3) are invariant 
under rigid-body changes to q and G. We obtain a unique solution when we prescribe 
q at the ends of the fibre; thinking of a situation where the ends are attached to rigid 
planes perpendicular to the x-axis we put 

q = q:(t) at x = s(t), q = &(t) at x = s&), 

where x = s,(t)  are the ends of the fibre. Note that if qT(t) = (ut, vl, wt) then us = B,, 
and vt and w2 will describe a twist applied at the ends. We also prescribe some initial 
form for the fibre shape G(x, y, z, 0) = 0. 

Letting E be the aspect ratio of the fibre, we non-dimensionalize and scale the 
problem with 

q = U(a,m,m), x = L ( Z , S B ,  €9, s,(t)  = Lr,(,(t) ( i  = 1,2), 
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Here, U is a typical drawing speed, representative of the fibre-end speed difference, 
9, - i,, L is the initial axial length of the fibre and EL a typical radial length, and it 
is assumed that G(x,  y, z, 0) can be expanded asymptotically in terms of Z, $! and z. 
The slender geometry of the fibre implies that B < 1 and our analysis is, therefore, 
based on expansions of the scaled dependent variables a, V ,  m, 8 ,  p and B as regular 
asymptotic series in even powers of B .  We will see in $4, however, that the choice of 
L / U  as the timescale is not always appropriate. 

In non-dimensional scaled variables, the stress tensor becomes 

and so we expand a as 

gYzo + B ~ @ ~ ~ ~  + o ( E 3 ) .  (2.5) 1 azzo + €2@zz1 E-l@zYO + E@zYl E - l @ z z O  + B@zzl 

e-l@zzO + B(T,,, @YzO + "2@Yzl f f Z Z O  + B2@zz1 

a = E-l@ZyO + €@z,l BYYO + E2@,y, - i  
We expand the other dependent variables, a, V ,  m, p and B as regular asymptotic 
series in e2, so that, for example, a - a 0 + s 2 u , + O ( ~ 4 ) .  

Substituting into ( 2 . 1 ) ,  and dropping the overbars here and henceforth, gives 

(2 .6b)  

( 2 . 6 ~ )  

Boundary conditions are found by expanding 

G(x,  y, z ,  t )  = Go(x, y, z ,  t )  +s2Gl(x, y, 2 ,  t )  + O(s4) 

and linearizing about the leading-order free surface, Go(x, y, z ,  t )  = 0. The kinematic 
condition, ( 2 . 2 ) ,  which we only need to leading order, becomes 

aGo aG0 aG, aGo- 
~ + U ~ - + ~ ~ - + W ~ -  aZ - 0 on G,(x ,y , z , t )  = 0, ax ay 

with Go(x, y, z ,  0) prescribed at time t = 0. 
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The zero-stress boundary conditions, (2.3), become 
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on G,(x, y, z, t )  = 0. 

3. The leading-order problem 
From ( 2 . 6 ~ )  and ( 2 . 8 ~ )  we find, on equating like powers of e2, that 

aG0 i3G 
~ z y o - + a z z o ~  = 0 on G,(s, y , z , t )  = 0. aY a Z  

Observing from (2.4) and (2.5) that azyo = auo/ay and azz0 = au,/az, we find that u, 
satisfies 

(3.1) au0 V~U, = 0, = o on G,(x, y, Z, t )  = 0, 
an0 

where, here and henceforth, $. = a2/ay2 + a2/az2 is the transverse Laplacian, and 
auo/ari, is the transverse normal derivative with respect to the curve GJx, y, z ,  t )  = 
0, with x and t held fixed. (In general, in what follows a hatted variable denotes the 
two-dimensional, transverse components of the unhatted variable.) Thus, u, is an 
eigensolution of (3.1 ) , 

and vzy0 = azz0 = 0 identically. 
uo = u,(x, t ) ,  (3.2) 

From the O(1) terms in (2.6b-d), we then have 

V . 8 ,  = 0, v . 4 ,  = --(x, t) ,  au0 (3.3u, b )  

where 6,, qo and 6 are the leading-order transverse tensor, transverse velocity vector 
and transverse gradient operator, respectively ; 

ax 
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The leading-order dynamic conditions are, from (2.8b, c) and (3.2), 

where ri, is the transverse normal to the surface Go(x,  y, z, t )  = 0 (with x and t regarded 
as fixed), defined by 
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bo.Ao = 0 on G,(x ,  y, z, t )  = 0 (3.4) 

A, = V G o / ~ V G o ~ .  (3.5) 

a w / a 2 2  - aza/ay a,) 
-aw/ayaz aw/ay2 ' 

v2po = - v 2  auolax = 0. 

We can introduce an Airy stress function n(y, z ; x ,  t )  such that 

(3.6) b o = (  

so that ( 3 . 3 ~ )  is satisfied automatically. From (2.4), (2.5) and (3.3) we deduce that 

and from (2.4), (2.5) and (3.6) we then deduce that 

From (3.4) we see that a%/ay and a%/& are functions of x and t only on 
Go(x,  y, z, t )  = 0 and it follows that B is linear in y and z, so that 

(3.7) 

Q4B = 0. (3.8) 

identically. Hence 
tensor ts0. 

Equations (2.4), 

ii, = 0, (3.9) 
crzz0 is the only non-zero component of the leading-order stress 

(2.5) and (3.9) imply 

and from the continuity equation, (3.3b), and (3.10), we have 

- + - - p  avo awo - - - - ( x , t ) .  au0 
ay aZ O - ax 

From (3.10) and (3.11) we then have 

vo = yauo + a ( x ,  t )  z+ b ( x ,  t ) ,  
2 ax 

(3.10 a-c) 

(3.1 1 u-c) 

(3.12u, b)  

where u(x, t ) ,  b(x ,  t )  and c(x ,  t )  are also undetermined eigenfunctions. They arise 
because (3.3)-(3.4) is a two-dimensional zero-boundary-stress Stokes' flow problem 
and its solution is unique only up to an arbitrary rigid-body translation (b  and c) and 
an arbitrary rigid-body rotation (a). Hence, even if we knew uo(x ,  t ) ,  the problem for 
the transverse leading-order velocities vo and wo would not be determinate. 
Nonetheless, we will be able to determine uo, vo and w, by considering the O(s2) terms 
in (2.6) and (2.8), and we will do so in the following section. 

First, however, we deduce a physically obvious mass conservation equation for the 
leading-order extensional flow, from the O( 1) equations, as follows. We need two 
forms of the Reynolds' transport theorem, namely that if, for x ,  t fixed, d is an area 
bounded by the closed simple curve G ( x ,  y, z, t )  = 0 and $ ( x ,  y, z, t )  is any differentiable 
function on d then 

( 3 . 1 3 ~ )  

(3.13 b)  

where ad denotes the curve G ( x ,  y, z ,  t )  = 0. 
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If we integrate the leading-order kinematic condition (2.7) around the closed curve 
G,(x, y, z, t )  = 0, we obtain 

= JJd;.q0dYdr, 

where A, is the transverse normal to the curve (3.5). Then, from the leading-order 
continuity equation (3.3b) we find that 

Putting A ,  = ssJ,dydz, this becomes 

a 
~ 'to +% (uo A,) = 0. 

(3.14) 

(3.15) 

4. The first-order equations 
To determine u,, v, and w, and the leading-order flow completely, we must proceed 

to the O(e2) terms in (2.6) and (2.8). The O(e2) terms from (2.6) can be written in the 
form 

The O(2)  terms in (2.8) simplify since the only non-zero component of uo is gzzo, and 
we find that they can be written as 

( 4 . 2 ~ )  
on G,(x, y, z, t )  = 0. 

(4.2b) 

- I  aa, 

We obtain an axial momentum equation by integrating ( 4 . 1 ~ )  over the cross- 
section do and applying the divergence theorem ; 

From (4.2b) and (3.13) we than obtain the constant-tension condition 
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Since axxo = -p,+2(auo/ax) = 3(auo/ax), we can also write this as 
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- ( 3 A 0 2 )  a = 0. 
ax (4.4) 

Together, (3.15) and (4.4) constitute a hyperbolic system for uo and A,. They require 
boundary and initial conditions, and we take these to be the initial leading-order area 
of the fibre, 

= JL.,,-. dy dz, 

and the axial velocity of the end planes of the fibre, 

uo(sr(t), t )  = B ( t )  (i = 1,2). 

Equations (3.15) and (4.4) are equivalent to (1.1) and, together with their boundary 
and initial conditions, they completely determine the evolution of an axisymmetric 
fibre. For a fibre that is not axisymmetric, however, we need three more equations 
to eliminate the arbitrary rigid-body motions in (3.12), and to determine wo and w,. 
We obtain these as follows. 

Integrating (4.1 b )  over a cross-section do and applying the divergence theorem 
gives 

and from (4.2b) and (3.13) we obtain 

From (2.4) and (2.5) we have axyl = aul/i3y+avo/ax and axel = au,/a.z+aw,/ax, so we 
can write this as 

2 [Jdo (!! + Vul) dy dz = 0. 

From (4.1a, (3.12) and (4.2b) we see that u1 satisfies the boundary-value problem 

a Z u ,  
V2U1 = -2-, 

ax2 

on Go(x,y,z,t) = 0. 

Note that the consistency condition for (4.7), namely 

(4 .74 

(4.7 b )  

reduces to (4.4) after using (3.12) to eliminate q,, applying the divergence theorem 
to eliminate a, b and c ,  and then applying (3.13b). So, in principle, (4.7) determines 
u1 up to an arbitrary additive function of x and t, as long as we assume that u,(x, t) 
is determined from (3.15) and (4.4) and that qo is known or, equivalently, that a, b 
and c in (3.12) are known; this knowledge would then allow us to find Go from (2.7). 
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We can use (4.6) and (4.7) to determine the evolution of the centreline of the fibre. 
To do so we need the identities 

where $(x, y, z, t )  is any twice continuously differentiable function. These follow from 
the divergence theorem and the vector identity 

@(($) = (9P$+2V$.  

Consider, for example, the first component of the double integral in (4.6), 

From (4.8~) we have 

and, using (4.7) to eliminate au,/ari,, and hl, and (3.12) to eliminate av,/ax and 
aw,/ax, we find that 

Using (4.8) to simplify the above, we find that the coefficients of aa/ax, %/ax and 
ac/ax all vanish identically and that 

after applying the Reynolds' transport theorem, (3.13). A similar calculation for the 
second component of the double integral in (4.6) gives 

Thus, (4.6) implies that 

or, equivalently that 

(4.9) 
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This then implies that the centreline of the fibre (ye, z c ) ,  defined by 
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lies along the straight line joining the centres of the two ends. We recall from the 
start of $2 that this line can move arbitrarily yet leave our model invariant. We take 
this line to be the x-axis, so that 

JJdo ydydz = JJdozdydz = 0. (4.10) 

If the centreline is initially straight, it remains straight for all t > 0 in our model. If 
it is not initially straight, it will straighten out on a timescale small compared to our 
timescale L/U (see Buckmaster & Nachman 1978; Buckmaster et al. 1975; Wilmott 
1989); in this case our choice of timescale L / U  is clearly inappropriate. 

To find b and c, we proceed as follows. Differentiating (4.10) with respect to t and 
2, using the leading-order continuity condition (2.7), and (3.13), gives 

From (3.12), we then obtain 

so that using the divergence theorem we get 

3 au, 

since au,/az, a(x, t )  and b(x, t )  are independent of y and z.  A similar argument shows 
that c(x, t) = 0. 

The third and final equation can be obtained by taking moments of (4.1 6). From 
the divergence theorem and the symmetry of & we find that 

= ido t) A (&.ti,)ds 

and, from (4.2) and (3.13), we deduce that 

(4.11) 
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or, equivalently, that 

Using the fact that b = c = 0 in (3.12), (4.12) becomes 
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(4.12) 

(4.13) 

Since (4.7) determines u1 up to an arbitrary additive function of x and t if uo and a 
are known, (4.13) allows us to determine a(x, t )  in principle. 

In summary, assuming that we know uo and A, from (3.15) and (4.4), we now have 
a closed system of equations for the leading-order shape Go and rotation a. A solution 
algorithm might be to time-step for Go as follows. Using known initial values of a, 
and hence qo, and ul, solve (2.7) for an updated Go. Then, use the known qo and the 
updated Go to find an updated u1 from the boundary-value problem (4.7). Finally, 
use the updated u1 and Go to update a and hence do from (4.13). This final step will 
require the application of boundary condition, such as a specified twist at each end 
of the fibre. 

In the next section we will show how to reduce this cumbersome solution procedure 
for u1 to a once-and-for-all boundary-value problem by using appropriately modified 
Lagrangian variables. 

5. Lagrangian description 
We begin by introducing new variables 6 , q  and 6 that are Lagrangian variables for 

the leading-order velocity field (uo, vo, wo), modified to account for cross-sectional 
area variations. We set 

(5.1 a )  

(5.1 b )  
( 5 . 1 ~ )  
(5.1 d) 

(5-2) 

(5 .34  

(5.3b) 

(5.34 

(5 .34  

(5.4) 
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We also note that (4.4) implies that 
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Setting 3 = 0 to be any Lagrangian description of the leading-order fibre surface, the 
kinematic condition (2.7) implies 

= 0. 
as 
a7 
- 

Thus, we see from (5.3) that 9 can be chosen to be 

G,(x, Y, Z , O )  = 3(t, r,C). 
The fact that $9 is a known function of our special choice of Lagrangian variables 
reflects the fact that each cross-section retains its shape but may both scale affinely 
and rotate with respect to its centroid. 

We now consider our equations (4.7) and (4.13) for u1 and a in these new variables. 
We need the chain rule identities 

(5.7a) 

(5.7b) 

(5.7c) 

(5 .74 

In order to simplify (4.7) as much as possible, we write 

we find that .ii; satisfies the Neumann boundary value problem 

9% = 0, (5.9a) 

where 

(5.9b) 
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We can further simplify the dependence of 4 on a and 8 by noting that the transport 
equations (3.12) become 

where 
theorem, 

= (a/aq,a/a[). Hence, if we put q5 = 1 in (4.8) and apply the divergence 

(5.11) 

This means that we can write 4 as a combination of two functions that are 
independent of 7 ; 

(5.12) 

where 4, and C2 satisfy the Neumann problems 

(5.13) 

Finally, the evolution of a and 0 are given by M/&r= a together with the 
Lagrangian form of (4.13), namely 

(5.15) 

where A,, is the cross-sectional area at t = 0. The highest derivative of 8 in (5.15) is 
a30/a2Ei37, and so (5.15) is the &derivative of a wave equation for 0. Suitable 
boundary and initial conditions for 0 are 

e(g,o) = 0, e(o,7) = 0, e ( i , T )  = ~ ( 7 ) .  (5.16) 

Note that the stretching and twisting are uncoupled since u, and A ,  and hence the 
amount of stretch are determined through (3.15) and (4.4), and then the twist is 
given by (5.15). It is shown in Dewynne et al. (1989) that the solution of (3.15) and 
(4.4) is independent of the history of the stretching. This, however, is not generally 
true of solutions of (5.15); that is, the stretch will be history independent, but the 
twist will in general depend on the history of the deformation. Also, observe that the 
inhomogeneous term in (5.15) is proportional to 

L 
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If this quantity is non-zero, there will be twisting of the fibre when the ends are 
pulled apart even with the zero boundary conditions (5.16). 

6. Examples - fibres with elliptical cross-sections 
We start with a fibre whose surface is initially given by 

where @(x) and y ( x )  are given positive functions. Our Lagrangian description of the 
surface is 

at any subsequent time. Since A(6,O) = @(LJy(5), we can explicitly solve (5.13), 
(5.14) for 2, and G2, and we find 

(6.2~) b) 

In order to simplify (5.15), we note the following 

(i) As a first specific example, consider the case of twist in the absence of 
stretching. In this case A&, t )  = A(& 0) = @([) r(E), uo = 0 and X = 6. The non- 
dimensional length of the fibre is always unity in this case and therefore (5.15) 
becomes 

The solution of (6.3) with the boundary conditions (5.16) is 

(6.4~) 

(6.4b) 

where f(5) = ($ + r”)/(Pr($ + r4)b 
(ii) As a second example, consider the case of stretching and twisting of a fibre 

whose cross-section is initially elliptical and has uniform cross-sectional area : 

A,(x,O) = 1 = sc/?(x)y(x). 
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Assuming that uo(O, t )  = 0 and s(0) = 1, the solution of (3.15) and (4.4) is 

Our Lagrangian description of the free surface is 

and, further, from (5.4), we clearly have 

a59 7 )  = 47) 5. 
Equations (6.2) remain valid for G, and G2, and we can write (5.15) for e ( 5 , ~ )  as 

where a = ae/a~, and with boundary and initial conditions (5.16). For this special 
case, note that if (&)/(a) is constant, then 

a = si(7) qt), e = a(7) @). 

In  the first and second cases above if (h) / (BB) is constant, and in the case of 
stretching with no twist (see Dewynne et al. 1989), the fibre shape is independent of 
the history of the motion; in none of these cases does it matter how the fibre is 
stretched, only how far it has been stretched. In general, however, the twist will 
depend on the history of the stretching through (5.15). This may easily be seen by 
considering the two cases in which the fibre is first pulled and then twisted and vice 
versa. In  the former case the amount of twist will be concentrated near the point of 
minimum cross-sectional area. In the latter case, the twist will be more evenly 
distributed. (Of course, the A and uo equations are independent of the history of the 
motion.) To see this, consider the simplest case of an axisymmetric fibre so that the 
twist equation (5.15) becomes 

or, returning to Eulerian variables, 

Thus 

and the twist gradient can be seen to be concentrated where A(x, t )  is a minimum; 
this is exaggerated if the twisting takes place after the stretching. 

7. Conclusion 
We have presented a systematic method for calculating the extension and twist of 

a fibre of small aspect ratio B .  As in the theory of rods in elasticity, the information 
needed to close the equations for the leading-order motion is contained in the 
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equations for the first-order motion. Given an initial fibre shape and drive 
mechanism, the procedure is to solve (3.15) and (4.4) as one would for an 
axisymmetric fibre, and also the elliptic boundary-value problems (5.13) and (5.14). 
The subsidiary functions X ,  0 and a, and hence the twist, are found from (5.3), (5.4) 
and (5.15) together with their initial and boundary conditions. This effectively means 
solving a wave equation whose solution appears to be history independent only in 
certain special cases. 

We emphasize that we have discussed the response only on the timescale LIU; as 
mentioned after (4.10) a new model, involving more time derivatives, is needed to 
describe shorter time-scale behaviour. Indeed, the models proposed in Buckmaster 6 
Nachman (1978), Buckmaster et al. (1975) and Wilmott (1989) do not have time 
reversibility properties similar to those of (1.1) and hence illustrate a clear distinction 
between, say, contracting and expanding fibres on these short timescales. 

In  seems unfortunate that the derivation of the principal new result, (5.15), takes 
so long when (1 .1)  and (4.10) can be written down almost at  once if some very 
plausible physical assumptions are made. It seems, however, essential to have a 
systematic derivation of the model over the relatively simple time- and lengthscales 
assumed in this paper if further progress is to be made, say, for short-time motion or 
for two-dimensional flows in sheets. 

The authors wish to acknowledge useful discussions with Dr J. M. Aitchison and the 
financial support of the Royal Commission for the Exhibition of 1851 (P. W.) and of 
the Centre for Mathematical Analytical, ANU (J. N. D.) where part of this work was 
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